Носов Михаил Александрович Большакова Анна Владимировна

Физика цунами

Межфакультетский учебный курс

Моско

мударственного университета имени М.В.Ломоносова

Лекция №3

- метеорологические причины
 падение метеоритов (нет данных)
 причина неизвестна
- вулканические извержения
- оползни и обвалы
- подводные землетрясения

HTDB/WLD (Новосибирск)

Общее количество землетрясений

Mw	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022 (08/03)
8.0+	1	1	1	2	2	1	1	0	1	1	1	0	3	0
7–7.9	16	23	19	12	17	11	18	16	6	16	9	8	16	0
6–6.9	144	150	185	108	123	143	127	130	104	117	222	87	140	30
5–5.9	1896	2209	2276	1401	1453	1574	1419	1550	1455	1674	2429	945	2051	330

https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes

M 8.0 - 78km SE of Lagunas, Peru 26.05.2019 07:41:15 (UTC) 5.812°S 75.270°W 122.6 km depth Duration - 60 seconds Casualties - 2 dead, 30 injured

M 8.2 - 286km NNE of Ndoi Island, Fiji

19.08.2018 00:19:40 (UTC) 18.113°S 178.153°W 600.0 km depth

Общее количество землетрясений

Общее количество землетрясений

Mw 3+113 earthquakes in the past 24 hours1,095 earthquakes in the past 7 days4,810 earthquakes in the past 30 days21,497 earthquakes in the past 365 days

Japan has had: (M1.5 or greater)

4 earthquakes in the past 24 hours 15 earthquakes in the past 7 days 87 earthquakes in the past 30 days 677 earthquakes in the past 365 days

The largest earthquake in Japan:

today: <u>4.8</u> in <u>Nanao</u>, <u>Ishikawa</u>, <u>Japan</u> this week: <u>5.1</u> in <u>Miyako</u>, <u>Iwate</u>, <u>Japan</u> this month: <u>5.6</u> in <u>Naha</u>, <u>Okinawa</u>, <u>Japan</u> this year: <u>7.0</u> in <u>Ishinomaki</u>, <u>Miyagi</u>, <u>Japan</u>

08.03.2022 Япония

2 hours ago 4.3 magnitude, 10 km depth

Naha, Okinawa, Japan $ho_{\frac{8 \text{ hours ago } 4.5 \text{ magnitude, } 10 \text{ km depth}}$ Itoman, Okinawa, Japan <u>18 hours ago 4.6 magnitude</u>, 77 km depth Yonakuni, Okinawa, Japan 19 hours ago 4.8 magnitude, 4 km depth Nanao, Ishikawa, Japan Y <u>1 day ago 4.9 magnitude</u>, 10 km depth Kushiro, Hokkaido, Japan 1 day ago 4.4 magnitude, 36 km depth Ishinomaki, Miyagi, Japan 2 days ago 4.5 magnitude, 110 km depth Yilan, Taiwan, Taiwan 2 days ago 5.1 magnitude, 10 km depth Naze, Kagoshima, Japan State of the second sec Miyako, Iwate, Japan 3 days ago 4.7 magnitude, 10 km depth

https://earthquaketrack.com/recent

СЕЙСМОЛОГИЯ

σεισμός — землетрясение λόγος — учение

- «Структурная» сейсмология строение Земли, модели Земли;
- «Очаговая» сейсмология очаг землетрясения, сейсмическая опасность, прогноз землетрясений.

Схема землетрясения

Пример сейсмограммы

Первый сейсмограф

В древние времена считалось, что землетрясения – очень недобрый знак и гнев небес.

Сейсмоскоп — указывает направление на эпицентр землетрясения. Был изобретён Чжан Хэном в 132 году в Китае

Сегодня воссозданный древний сейсмограф хранится в выставочном зале Музея истории Китая в городе Пекин.

Инструментальная эпоха в сейсмологии началась в 1879-1890 гг. с появлением первых эффективных сейсмографов

Время пробега волны и расстояние вдоль поверхности

Типы сейсмических (упругих) волн

недиспергирующие

μ – модуль сдвига

К – модуль всестороннего сжатия

ПОВЕРХНОСТНЫЕ Ф Ф Ф ВОЛНЫ Рэлея ВОЛНЫ Лява

диспергирующие

 $c_{P} > c_{S}$

Типы сейсмических (упругих) волн

юдиопортирующие

В коре Земли (PREM) $c_P \approx 5.8 - 6.8 \text{ км/c}$ $c_S \approx 3.2 - 3.9 \text{ км/c}$

Типы упругих волн в безграничной однородной и изотропной среде

Распространение р- волн

Распространение s- волн

Типы поверхностных упругих волн

волны Лява

волны Рэлея

Распространение волны

Новая Зеландия, 2011

Распространение волны

$$c_p(z) = \sqrt{\frac{K+4/3\mu}{\rho}}$$
 $c_s(z) = \sqrt{\frac{\mu}{\rho}}$

$$c_p > c_s$$

Для горных пород:

$$c_p \cong \sqrt{3}c_s = 1.7c_s$$

Обозначения: р и s – Манчестер, 1911

Сейсмические волны (лучи) внутри Земли

Subduction Zone

Мелкофокусные землетрясенияГлубокофокусные землетрясения

h<70 км – 60-70% h_{max}=734 км (Фиджи, NEIC)

Island Arc

Сейсмичность Сахалинской области

Рисунок 1. Тектоническая схема региона Охотского моря (*Biebow et al.*, 2000; *Kiratzi and Papazachos*, 1996; *Maruyama et al.*, 1997; *Rodnikov et al.*, 2001). 1 – скорость движения плит по данным GPS; 2 – зоны субдукции; 3 – разломы

Rift Zone

Срединно-океанические хребты

Время между двумя последовательными землетрясениями и величина сбрасываемого напряжения варьируются от события к событию

Основные типы тектонических разрывов и геометрия разлома

левосторонний сдвиг (left-lateral strike-slip)

правосторонний сдвиг

взбросо-сдвиг (oblique-slip)

Как измерить силу землетрясения?

- Шкала интенсивности качественная, организована по трем признакам (MSK-64, 12балльная):
- а) воздействие на людей и их окружение
- б) воздействие на сооружения
- в) природные явления

≽ Шкала магнитуд или шкала Рихтера

Как измерить силу землетрясения?

Шкала инте организована балльная):

Описательная, субъективная шкала (используется для сейсмического районирования)

а) воздействие на людей и их окружение

- б) воздействие на сооружения
- в) природные явления

Физическая, объективная шкала

Шкала MSK-64

IX баллов. Всеобщие повреждение зданий.

а) Всеобщая паника; большие повреждения мебели. Животные мечутся и кричат.

б) Во многих зданиях большие и глубокие трещины в стенах, падение дымовых труб, в отдельных - сквозные трещины и проломы в стенах, обрушение частей зданий, обрушение внутренних стен. Некоторые здания полностью разрушены. Памятники и колонны опрокидываются. Значительные повреждения искусственных водоемов; разрывы части подземных трубопроводов. В отдельных случаях - искривление железнодорожных рельсов и повреждение проезжих частей дорог.

в) На равнинах наводнения. Трещины в грунтах достигают ширины 10 см, большое количество тонких трещин в грунтах. Скалы обваливаются; оползни и осыпания грунта. На поверхности воды большие волны.

Шкала магнитуд

(существует несколько вариантов!)

Понятие магнитуды введено Чарльзом Рихтером в 1935 г.

Первоначальная шкала Рихтера для близких землетрясений <600км

$$M_L = lg A_{max}$$

А_{тах} - макс. ампл. колебаний в мкм по записи стандартного короткопериодного (T=0.8 c) сейсмографа на эпицентральном расстоянии 100 км

Для удаленных землетрясений (>2000 км) введена телесейсмическая магнитудная шкала для поверхностных волн с периодом T=18-22 с

$$M_s = lg(A/T) + 1.66 lg D + 3.3$$

D – эпицентральное расстояние в градусах

Шкала магнитуд

(существует несколько вариантов!)

Для глубоких толчков, которые не порождают поверхностных волн, Бено Гутенберг предложил унифицированную магнитуду для эпицентральных расстояний 600-2000 км, определяемую по амплитуде объемных (обычно продольных) волн

$$m_b = lg(A/T) + Q(D,h)$$

Q(D,h) – поправка, зависящая от эпицентрального расстояния D и глубины фокуса h

Магнитуда, определяемая по сейсмическому моменту M_0 [H M] $M_w = \frac{\lg M_0}{1.5} - 6.07$ $M_0 = \mu Sd$

- 1.6-балльная Зиберга-Амбразейса
- 2.12-балльная Пападопулоса-Имамуры

1.Имамуры-Ииды $m = \log_2 H_{max}$

2.Соловьева-Имамуры

 $I = 0.5 + \log_2 H$

3. Мурти-Лумиса

 $ML = 2(\log_2 E[\operatorname{spr}] - 19)$

1.6-балльная Зиберга-Амбразейса

2.12-балльная Пападопулоса-Имамуры 1.Имамуры-Ииды $m = \log_2 H_{max}$

2.Соловьева-Имамуры

 $I = 0.5 + \log_2 H$

3. Мурти-Лумиса

 $ML = 2(\log_2 E[\operatorname{spr}] - 19)$

Meteorological Seiches Explosion Institute of Computational Mathematics and Mathematical Geophysics SB RAS Tsunami Laboratory, Novosibirsk, Russia

TL/ICMMG Global Historical Tsunami Database

TL/ICMMG Global Historical Tsunami Database » Online Catalogs » HTDB

On	line 1	Data	base	Searc	h

Year: -6000 2022
Depth: 0 600
Magnitude: 2 9.3
Tsunami intensity: -5 5
Tsunami Magnitude: -4 9
Wave Height: 0 - 525
Moment magnitude: 5.3
Abe's tsunami magnitude 6 9.4
Cause of Tsunami:
(Ctrl+Click to select more than one):
Volcanic
Landslide

Area Coordinates ('-' for southern latitude and western longitude):	I: > 4
Latitude: -90 — 90	I: 2 - 4
	I: 1 - 2
Longitude: -180 — 180	I: U- I I: Unknown
Number of Run-ups: 0 — 6051	
Taumanigania Pagian Cada: Any at) Ms: > 8
) Ms: 7,5 - 8
Basic reference code: Any 🗸) Ms: 7 - 7,5
Source Region:) Ms: 6,5 - 7
	Ms: < 6,5
Damage: 🗹 None 🗹 Slight 🗹 Moderate 🗹 Large	
Validity: 0 5	
Results per page: 10 🗸	

Характеристики «силы» землетрясений и цунами

землетрясения	цунами		
Mw	І Соловьева-Имамуры		
$M_w = \frac{\lg \ M_0}{1.5} - 6.07$	$I = 0.5 + \log_2 \overline{H}$		

Связь между интенсивностью цунами и магнитудой землетрясения

Связь между интенсивностью цунами и магнитудой землетрясения

Большой разброс обязан различиям в

- механизме землетрясения;
- глубине землетрясения;
- ✓ распределении подвижки;
- продолжительности вспарывания разрыва;
- ✓ особенностям топографии берега и дна;
- возможному вкладу в цунами несейсмических источников и фазы прилива;
- глубине океана в источнике;
- ✓ ошибкам в определении Мw и I;
- ✓ несовершенству шкал Мw и I (???)

Землетрясение: основные понятия

гипоцентр (фокус)

Распределение реальных событий (с 1976 г.) по глубине h и магнитуде Mw

https://www.globalcmt.org/

гипоцентр (фокус)

Моментная магнитуда
$$M_w = \frac{\lg M_0}{1.5} - 6.07$$
 $M_0 = \mu LWd$

L, km	W, km	d, m	M ₀ , H*m	$\mathbf{M}_{\mathbf{w}}$	
1	0.5	0.1	1.5*1015	4	
10	5	1	1.5*1018	6	
100	50	10	1.5*10 ²¹	8	
1000	500	50	7.5*10 ²³	9.8	
10000	1000	7 100	3*10 ²⁵	10.9	
невероятное для Земли событие					

Механизм очага землетрясения:

Механизм очага землетрясения:

Распределение реальных событий (с 1976 г.) с магнитудой 7≤Mw≤9 по углам Dip и Rake

Угол падения δ (Dip) определяется, как угол в вертикальной плоскости, отсчитывается вниз от горизонтали и изменяется $0 \le \delta \le \pi/2$ Угол подвижки θ (Rake) измеряется $-\pi \le \theta \le \pi$ Если $\delta \ne 0$, $\delta \ne \pi/2$ и $0 \le \theta \le \pi$, то подвижку называют взбросом или надвигом. Если $\delta \ne 0$, $\delta \ne \pi/2$ и $-\pi \le \theta \le 0$, то подвижку называют сбросом или разрыв со скольжением по падению.

Чистый взброс $\delta = \pi/2, \theta = \pi/2$ Чистый сброс $\delta = \pi/2, \theta = -\pi/2$

Global CMT Web Page

http://www.globalcmt.org/

Search form

If you use CMT results in published work, please provide an appropriate citation; see here for information on how to cite the catalog. Thanks!

Enter parameters for CMT catalog search. All constraints are 'AND' logic.

Date constraints: catalog starts in 1976 and goes through present There are several methods to choose date ranges--use the radio buttons to select which method you want to use

Starting Date:	Ending Date:		
Year: 1976 Month: 1 Day: 1	© Year: 1976 Month: 1 Day: 1		
Vear: 1976 Julian Day: 1	Vear: 1976 Julian Day: 1		
	Number of days: 1 Including starting day		

Magnitude constraints: catalog includes moderate to large earthquakes only

(see <u>note on calculation of magnitudes</u>) Moment magnitude: 0 <= Mw <= 10

 Surface wave magnitude:
 0
 <= Ms <= 10</td>

 Body wave magnitude:
 0
 <= mb <= 10</td>

Location constraints:

Latitude: (degrees) from -	90 t	to	90		Mus	st be between -90 and 90
Longitude: (degrees) from	-180		to	180		Must be between -180 and 180
Depth: (kilometers) from	0	to	o 1	000		

Source time and mechanism constraints:

Centroid time shift: (seconds) from -9999 to 9999

Tension axis plunge: (degrees) from 0 to 90

Null axis plunge: (degrees) from 0 to 90

Use tension and null axis plunge to search by mechanism. For example, thrust faults have large plunge (>45) of tension axis, strike-slip faults have large plunge of null axis, and normal faults have small (<45) for both tension and null axes.

Output type:

- Standard
- O List of event names

GMT psvelomeca input

OMT psmeca input

CMTSOLUTION format

- Full format
- Done Reset

Global CMT Catalog

Search criteria:

 Start date:
 2018/1/1
 End date:
 2018/9/12

 -90 <=lat<=</td>
 90
 -180 <=lon<=</td>
 180

 0 <=depth<=</td>
 1000
 -9999 <=time shift<=</td>
 9999

 0 <=mb<<=</td>
 10
 0<=Ms<=</td>
 10
 7<=Mw<=</td>
 10

 0 <=tension</td>
 plunge<=</td>
 90
 0
 <=null</td>
 plunge<=</td>
 90

Results

201801100251A NORTH OF HONDURAS r

```
Date: 2018/ 1/10 Centroid Time: 2:51:44.3 GMT

Lat= 17.56 Lon= -83.86

Depth= 16.5 Half duration=14.0

Centroid time minus hypocenter time: 11.0

Moment Tensor: Expo=27 -0.242 -0.967 1.210 0.117 0.199 2.090

Mw = 7.5 mb = 0.0 Ms = 7.5 Scalar Moment = 2.37e+27

Fault plane: strike=76 dip=87 slip=3

Fault plane: strike=346 dip=87 slip=177
```

201801140918A NEAR COAST OF PERU Г

```
Date: 2018/ 1/14 Centroid Time: 9:18:52.3 GMT

Lat= -15.95 Lon= -74.78

Depth= 40.9 Half duration= 8.9

Centroid time minus hypocenter time: 6.8

Moment Tensor: Expo=26 5.570 -3.120 -2.440 0.760 -1.530 3.390

Mw = 7.1 mb = 0.0 Ms = 7.1 Scalar Moment = 6.13e+26

Fault plane: strike=305 dip=38 slip=79

Fault plane: strike=139 dip=53 slip=98
```


h – глубина верхней кромки площадки разрывы *L* – длина площадки разрыва, *W*-ширина площадки разрыва *D* – вектор Бюргерса, μ , λ - константы Ламе δ – угол падения (Dip), θ – угол между направлением простирания и направлением подвижки (Rake)

Формулы Окада [Okada, 1985]

Входные данные:

- Упругие модули (μ, λ)
 Размеры площадки (L, W)
 Глубина (h)
- ✓ Углы: Strike, Dip, Rake
 ✓ Подвижка (|D|)

$$f(\boldsymbol{\xi}\,,\boldsymbol{\eta})\,||=f(\boldsymbol{x},\boldsymbol{p})-f(\boldsymbol{x},\boldsymbol{p}-\boldsymbol{W})-f(\boldsymbol{x}-\boldsymbol{L},\boldsymbol{p})+f(\boldsymbol{x}-\boldsymbol{L},\boldsymbol{p}-\boldsymbol{W}).$$

For strike-slip

$$u_{x} = -\frac{U_{1}}{2\pi} \left[\frac{\xi q}{R(R+\eta)} + \arctan\left(\frac{\xi \eta}{qR}\right) + I_{1} \sin \delta \right] \left\| u_{y} = -\frac{U_{1}}{2\pi} \left[\frac{\tilde{y}q}{R(R+\eta)} + \frac{q\cos\delta}{R+\eta} + I_{2}\sin\delta \right] \right\|,$$
$$u_{z} = -\frac{U_{1}}{2\pi} \left[\frac{\tilde{d}q}{R(R+\eta)} + \frac{q\sin\delta}{R+\eta} + I_{4}\sin\delta \right] \left\| .$$

46

For dip–slip

$$\begin{split} u_{x} &= -\frac{U_{2}}{2\pi} \left[\frac{q}{R} - I_{3} \sin \delta \cos \delta \right] \Big| \Big|, \\ u_{y} &= -\frac{U_{2}}{2\pi} \left[\frac{\tilde{y}q}{R(R+\xi)} + \cos \delta \arctan\left(\frac{\xi\eta}{qR}\right) - I_{1} \sin \delta \cos \delta \right] \Big| \Big|, \end{split}$$
(2.23)
$$u_{z} &= -\frac{U_{2}}{2\pi} \left[\frac{\tilde{d}q}{R(R+\xi)} + \sin \delta \arctan\left(\frac{\xi\eta}{qR}\right) - I_{5} \sin \delta \cos \delta \right] \Big| \Big|. \end{split}$$

For tensile fault

$$\begin{split} u_{x} &= \frac{U_{3}}{2\pi} \left[\frac{q^{2}}{R(R+\eta)} - I_{3} \sin^{2} \delta \right] \Big| \Big|, \\ u_{y} &= \frac{U_{3}}{2\pi} \left[\frac{-\check{d}q}{R(R+\xi)} - \sin \delta \left\{ \frac{\xi q}{R(R+\eta)} - \arctan \left(\frac{\xi \eta}{qR} \right) \right\} - I_{1} \sin^{2} \delta \right] \Big| \Big|, \quad (2.24) \\ u_{z} &= \frac{U_{3}}{2\pi} \left[\frac{\check{y}q}{R(R+\xi)} + \cos \delta \left\{ \frac{\xi q}{R(R+\eta)} - \arctan \left(\frac{\xi \eta}{qR} \right) \right\} - I_{5} \sin^{2} \delta \right] \Big| \Big|, \end{split}$$

where

$$\begin{split} & h_{1} = -\frac{\mu}{\lambda + \mu} \left[\frac{\xi}{(R + \tilde{d})\cos\delta} \right] - I_{5}\tan\delta, \\ & I_{2} = -\frac{\mu}{\lambda + \mu} \ln(R + \eta) - I_{3}, \\ & I_{3} = \frac{\mu}{\lambda + \mu} \left[\frac{\tilde{y}}{(R + \tilde{d})\cos\delta} - \ln(R + \eta) \right] + I_{4}\tan\delta, \\ & I_{4} = \frac{\mu}{\lambda + \mu} \frac{1}{\cos\delta} \left[\ln(R + \tilde{d}) - \sin\delta\ln(R + \eta) \right], \\ & I_{5} = \frac{\mu}{\lambda + \mu} \frac{2}{\cos\delta} \arctan\left(\frac{\eta (X + q\cos\delta) + X(R + X)\sin\delta}{\xi (R + X)\cos\delta} \right), \end{split}$$

$$(2.25)$$

and if $\cos \delta = 0$,

$$I_{1} = -\frac{\mu}{2(\lambda + \mu)} \frac{\xi q}{(R + \tilde{d})^{2}},$$

$$I_{3} = \frac{\mu}{2(\lambda + \mu)} \left[\frac{\eta}{R + \tilde{d}} + \frac{\tilde{y}q}{(R + \tilde{d})^{2}} - \ln(R + \eta) \right],$$

$$I_{4} = -\frac{\mu}{\lambda + \mu} \frac{q}{R + \tilde{d}},$$

$$I_{5} = -\frac{\mu}{\lambda + \mu} \frac{\xi \sin \delta}{R + \tilde{d}},$$
(2.26)

Определение сейсмического момента

$$M_0 = \mu DLW$$

Эмпирические соотношения [Kanamori, Anderson, 1975]

$$L/W = 2$$
, $D/L = 5 \cdot 10^{-5}$

Эмпирические соотношения [Kanamori, 1997] $M_w = \frac{\log_{10} M_0}{1.5} - 6$

h- глубина верхней кромки площадки разрывы

L-длина площадки разрыва, *W*-ширина площадки разрыва

D- вектор Бюргерса, $\ \mu, \ \lambda\text{-}$ константы Ламе

- M_0 -сейсмический момент, M_w -моментная магнитуда
- δ- угол падения, θ- угол между направлением простирания и направлением подвижки

$$lg L[\kappa M] = 0.5 M_{W} - A_{L}$$

$$lg W[\kappa M] = 0.5 M_{W} - A_{W}$$

$$lg D[M] = 0.5 M_{W} - A_{D}$$

$$A_{L} = 1.92 - 2.07$$

$$\mu: 3 - 12 \cdot 10^{10} \Pi a \qquad A_{W} = 2.22 - 2.37$$

$$A_{D} = 3.22 - 3.37$$

магнитуда землетрясения M_w
 глубина очага h
 углы δ и θ

$$M_w = 2/3\log_{10} M_0 - 6.07$$
 [Leonard, 2010]

$$\mathbf{M}_{0} = \mu \mathbf{D} \mathbf{L} \mathbf{W} [\mathbf{H} \cdot \mathbf{M}]$$

$$\mathbf{C}_2 = 3.8 \, (1.5 - 12) \cdot 10^{-5}$$

$$C_1 = 17.5 (12 - 25) \text{ m}^{1/3}$$

$$\mathbf{D} = \mathbf{C}_2 \sqrt{\mathbf{LW}}$$

W

$$\beta = 2/3$$

параметров очага землетрясения

Пример современных эмпирических связей для

[Leonard, 2010]

 $= 3/5 M_{W} + 3.642 - 3/5 \log C_1 - 2/5 \log C_2 \mu$ $\log W[M] =$ $= 2/5 M_{W} + 2.428 + 3/5 \log C_1 - 4/15 \log C_2 \mu$ $\log D[M] =$ $= 1/2 M_{w} + 3.035 + 2/3 \log C_{2} - 1/3 \log \mu$

параметров очага землетрясения

 $\log L[M] =$

Пример современных эмпирических связей для

Связь параметров очага с сейсмическим моментом (моментной магнитудой)

Global CMT Catalog

Search criteria:

 Start date: 2021/1/1
 End date: 2022/3/8

 -90 <=lat<= 90</td>
 -180 <=lon<= 180</td>

 0 <=depth<= 1000</td>
 -9999 <=time shift<= 9999</td>

 0 <=mb<= 10</td>
 0<=Ms<= 10</td>
 8<=Mw<= 10</td>

 0 <=tension plunge<= 90</td>
 0 <=null plunge<= 90</td>

Results

202103041928A KERMADEC ISLANDS, NEW ZE

```
Date: 2021/ 3/ 4 Centroid Time: 19:29: 2.1 GMT
Lat= -29.11 Lon=-176.73
Depth= 33.9 Half duration=26.5
Centroid time minus hypocenter time: 28.9
Moment Tensor: Expo=28 0.957 -0.055 -0.903 0.231 1.260 -0.247
Mw = 8.1 mb = 0.0 Ms = 8.1 Scalar Moment = 1.6e+28
Fault plane: strike=199 dip=19 slip=97
Fault plane: strike=11 dip=72 slip=88
```

Global CMT Catalog

Search criteria:

 Start date: 2021/1/1
 End date: 2022/3/8

 -90 <=lat<= 90</td>
 -180 <=lon<= 180</td>

 0 <=depth<= 1000</td>
 -9999 <=time shift<= 9999</td>

 0 <=mb<= 10</td>
 0<=Ms<= 10</td>
 8<=Mw<= 10</td>

 0 <=tension plunge<= 90</td>
 0 <=null plunge<= 90</td>

Results

202103041928A KERMADEC ISLANDS, NEW ZE

```
Date: 2021/ 3/ 4 Centroid Time: 19:29: 2.1 GMT
Lat= -29.11 Lon=-176.73
Depth= 33.9 Half duration=26.5
Centroid time minus hypocenter time: 28.9
Moment Tensor: Expo=28 0.957 -0.055 -0.903 0.231 1.260 -0.247
Mw = 8.1 mb = 0.0 Ms = 0.1 Scalar Moment = 1.6e+28
Fault plane: strike=199 dip=19 slip=97
Fault plane: strike=11 dip=72 slip=88
```

Две возможные плоскости разрывов

http://www.globalcmt.org/

Распределение реальных событий (1976-2012) с магнитудой 7≤Мw≤9 по углам Dip и Rake

магнитуда землетрясения M_w глубина очага h углы δ и θ

M_w=8; h=10; δ=45°; θ=90° Формулы Окада

магнитуда землетрясения M_w глубина очага h углы δ и θ

M_w=9; h=40; δ=80°; θ=10° Формулы Окада

Параметры деформации дна в очаге цунами

Параметры деформации дна в очаге цунами

. Амплитуда
$$\Delta\eta=\eta_{
m max}-\eta_{
m min}$$

2. Вытесненный объём $V = \left| \iint \eta \, d \, s \right|$

х, км

 Энергия
 1016

 цунами как
 1015

 функция
 1014

 глубины
 1014

 очага
 1013

 землетря 1012

 сения
 1012

Горизонтальный размер (средний радиус) очага цунами

$$R_{ts} \equiv \sqrt{V/\Delta\eta}$$

$\log_{10} R_{ts} [km] = 0.5 M_{w} - 2.29$

$lgR_{TS} = (0.5 \pm 0.07)M - (2.1 \pm 0.6)$

[Доценко, Соловьев, 1990]

Энергии землетрясения и цунами в зависимости от моментной магнитуды

Примеры расчета начального возвышения водной поверхности

1. Форма начального возвышения и отношение энергии начального возвышения близки

Примеры расчета начального возвышения водной поверхности

2. Форма начального возвышения различаются сущетсвенно, в то время как значения энергий бизки

Примеры расчета начального возвышения водной поверхности

3. Форма начального возвышения и значения энергии различаются значительно

Распределение числа событий по отношению E_{NP1}/E_{NP2}

Связь Е_{NP1} и Е_{NP2}

11.04.2012 Суматра Mw=8.2, h=10 km

Moment tensor solutions

Time	2012-04-11 10:43:09		
Magnitude	8.2		
Latitude	0.63°N		
Longitude	92.58°E		
Depth	30 km		
Nodal planes	Strike	Dip	Rake
	107°	89°	176°
	17°	87°	0°

11.03.2011 Япония Mw=8.9, h=15 km

Moment tensor solutions

Time	2011-03-11 05:46:22		
Magnitude	8.9		
Latitude	38.12°N		
Longitude	142.65°E		
Depth	15 km		
Nodal planes	Strike	Dip	Rake
	200°	10°	91°
	20°	80°	90°

Характеристики «силы» землетрясений и цунами

землетрясения	цунами	
Mw	І Соловьева-Имамуры	
$M_w = \frac{\lg \ M_0}{1.5} - 6.07$	$I = 0.5 + \log_2 \overline{H}$	

гипоцентр (фокус)

Очаг землетрясения. Основные понятия

Finite Fault Model

Центральные Курилы, 15 ноября 2006 г

Sumatra - Andaman Earthquake

Sumatra (Indonesia)

https://earthquake.usgs.gov/

The United States Geological Survey

http://equake-rc.info/SRCMOD/

Finite-Source Rupture Model Database

Метод расчета «источника цунами»

Остаточное смещение поверхности дна (скалярное поле)

Остаточная деформация дна (векторное поле)

Формулы Окада

и принцип суперпозиции

Finite Fault Model

Источники данных:

Finite Fault Models:

- •U.S. Geological Survey (USGS)
- •California Institute of Technology (CalTech)
- •UC Santa Barbara (UCSB)
- •SRCMOD (Finite-
- Source Rupture Model Database)

Глобальные данные по батиметрии и топографии:

• The GEBCO_08 Grid - a global 30 arc-second grid (General Bathymetric Chart of the Oceans)

17.07.2006 Ява M_w=7.9, I=2

https://earthquake.usgs.gov/earthquakes/eventpage/usp000ensm/executive

2006-07-17 08:19:26 (UTC) 9.284°S 107.419°E 20.0 km depth

17.07.2006 Ява M_w=7.9, I=2

https://earthquake.usgs.gov/earthquakes/eventpage/usp000ensm/executive

2006-07-17 08:19:26 (UTC) 9.284°S 107.419°E 20.0 km depth

Finite Fault model

17.07.2006 Ява M_w=7.9, I=2

https://earthquake.usgs.gov/earthquakes/eventpage/usp000ensm/executive

Finite Fault model

https://www.ngdc.noaa.gov/hazard /tsu_db.shtml

I=2

2006-07-17 08:19:26 (UTC) 9.284°S 107.419°E 20.0 km depth

